Node Classification on The Citation Network Using Graph Neural Network
نویسندگان
چکیده
Research on Graph Neural Networks has influenced various current real-world problems. The graph-based approach is considered capable of effectively representing the actual state surrounding data by utilizing nodes, edges, and features. Consider feedforward neural network graph approaches, we determine accuracy each method. In baseline experiment, training testing were performed using NN approach. resulting FNN was 72.59% GNN model increased 81.65%. There a 9.06% increase in between model. new utilized predictions showcases probabilities class through randomly generated examples.
منابع مشابه
assessment of the efficiency of s.p.g.c refineries using network dea
data envelopment analysis (dea) is a powerful tool for measuring relative efficiency of organizational units referred to as decision making units (dmus). in most cases dmus have network structures with internal linking activities. traditional dea models, however, consider dmus as black boxes with no regard to their linking activities and therefore do not provide decision makers with the reasons...
scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network
today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...
Cancer Classification Using Neural Network
Naturally, cells in human body grow and divide in a controlled way to produce more cells to maintain health. Cancer affects human body when abnormal cells divide without control and becomes able to invade other tissues. The genetic material (DNA) of these cells becomes damaged or changed that affects normal cell growth and division. Early diagnosis is of considerable significance of the physici...
متن کاملEstimation of Reference Evapotranspiration Using Artificial Neural Network Models and the Hybrid Wavelet Neural Network
Estimation of evapotranspiration is essential for planning, designing and managing irrigation and drainage schemes, as well as water resources management. In this research, artificial neural networks, neural network wavelet model, multivariate regression and Hargreaves' empirical method were used to estimate reference evapotranspiration in order to determine the best model in terms of efficienc...
متن کاملbreathomics for gastric cancer classification using back-propagation neural network
breathomics is the metabolomics study of exhaled air. it is a powerful emerging metabolomics research field that mainly focuses onhealth-related volatile organic compounds (vocs). since the quantity of these compounds varies with health status, breathomics assuresto deliver noninvasive diagnostic tools. thus, the main aim of breathomics is to discover patterns of vocs related to abnormal metabo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Inspiration
سال: 2023
ISSN: ['2088-6705', '2621-5608']
DOI: https://doi.org/10.35585/inspir.v13i1.49